
The Magazine for Agile Developers and Agile Testers

May 2013

issue 14
Agile Adoption Stories – What Worked and What Didn’t

Page 49 Agile Record – www.agilerecord.com

Keeping up?
by Huib Schoots

Column

“Testing cannot keep up with development. They need to test
TXLFNHU�µ�7KLV�ZDV�RQH�RI� WKH�VWDWHPHQWV� WKDW�ZHUH�GLVFXVVHG�
during a DEWT peer conference [1] in the Netherlands that took
place from the 20th to the 21st of April 2013.

Is this also familiar to you? I have often heard people say testers
are not able to keep up with the pace of development. Is that
really true? When conducting projects in an agile context the
whole team is supposed to be responsible for getting things done
together. Programmers are equally responsible for testing as any
other member of the team. So how could this be true? I have met
several programmers claiming that the tester in their project was
not able to thoroughly test everything that they were building:
“testers are too slow and testing is taking too much time.” When
talking about their problems with testing it became clear to me
that those programmers were not contributing to the testing in
their projects very much.

DEVOPS

While visiting a client, I experienced that DEVOPS was taken quite
literally. The organization only valued programmers, which they
referred to as developers and people who could do maintenance,
which they called OPS. Other disciplines were not appreciated very
much. Here I met programmers who were not willing to do testing at
DOO��&RGH�LQ�WKLV�FDVH�RIWHQ�ZHQW�XQWHVWHG��2QH�RI�WKH�PRVW�SRSXODU�
excuses used was the time pressure to meet deadlines. I was not
surprised that this organization made international headlines not
so long ago, referring to serious problems with their IT.

James Bach turned the “keeping up with programmers” statement
around during the DEWT weekend: in teams where testing is alleged
to not be able to keep up, programmers are quickly introducing
risks that they cannot keep up with. I like his view to this problem.
Teams should notice that they are creating risks faster than they
can understand and cope with. He also gave food for thought: can
ZH�DXWRPDWH�GHYHORSPHQW"�2U�PDQDJHPHQW�IRU�WKDW�PDWWHU"�1R��
So why do people think we can automate testing?

Reducing Risks

So how can agile teams reduce the risks, while creating new
products or changing the existing products? When I look at teams
I see two types of people: those who are optimistic and dream that

everything will be all right and those who are skeptical and often
unfairly judged as pessimistic. Excellent testers know that things
can be different and are trained to identify risks, learn fast, and
WKLQN�FULWLFDOO\�DERXW�ZKDW�WKH\�VHH�LQ�RUGHU�WR�ÀQG�DV�PXFK�SRWHQWLDO�
problems as possible. I seriously cannot imagine any agile team
can function well without a trained tester. Does this need to be
a dedicated tester? It could well be, but there are many different
ways to implement the testing role. As long as the one(s) who picks
it up, is well trained or at least coached by a highly skilled expert.

Learning about the product

Why do people think testing can be fully automated? Developing
software is often seen as factory work [2] . But to me developing
VRIWZDUH�RU�HYHQ�FRQÀJXULQJ�DQ�RII�WKH�VKHOI�SURGXFW�LV�OLNH�UHVHDUFK�
and development. Humans decide what they want to build, but
they learn over time and they adapt current desired methodolo-
gies. Together with the team, the product owner explores what is
wanted and the team helps him to achieve their wishes.

Here are some things I have learned through my experience that
you may want to considering order to lower the risks in your project,
while addressing the ridiculous claim that “testing cannot keep
up with development”.

Excellent unit testing

Excellent unit testing is essential. In any project unit testing is
LPSRUWDQW�EXW�LQ�DQ�DJLOH�FRQWH[W�LW�PD\�HYHQ�EH�PRUH�LPSRUWDQW��
Developers need to test their own stuff and I know they can do
WKDW��7HDPV�FDQ�OHDUQ�KRZ�WR�GR�LW�SURSHUO\�DQG�HIÀFLHQWO\��7KH\�
can do an awesome job automating their own checks and build a
solid pack of automated unit regression checks [3], making sure
that the basic stuff works when releasing code to be tested by
others. This also reminds us to automate checks in a smart way.
'R�QRW�WU\�WR�DXWRPDWH�WHVWV�RQ�D�*8,�OHYHO��ZKLFK�FDQ�EH�GRQH�
on lower level; for example integration or even unit testing level.

Regression testing

In an agile context software is developed iterative and incremental
in sprints so regression testing is very important in many cases.
Regression testing is often checking if untouched functionality still
works. In many agile contexts you will want to have an automated

COLUMN: Keeping up?
by Huib Schoots

Page 50 Agile Record – www.agilerecord.com

suite taking care of regression risks. Test automation (some pre-
fer to call it automated checking [3] or tool assisted testing) is
essential for fast feedback and continuous integration. However,
WKLV�GRHV�QRW�PDNH�WHVWLQJ�XQQHFHVVDU\��7KLQNLQJ�RI�WKH�ULJKW�WHVWV�
to do and learning about situations that can occur is why testing
is always needed when creating or changing software. Even if
you only change a process or a single artifact, it is worthwhile to
consider getting a trained tester to look at your work.

Lightweight visual documentation

In an agile context we want to move fast. This does not mean
creating no documentation, as this introduces even more risks
in your project. So what can we do since we do not have the time
to create test plans, test cases and test data as we are used to?
Test documentation needs to able to deal with change by being
transparent, easily accessible and maintainable. Using simple
dashboards and lightweight test documentation (like mind maps)
maybe a solution you want to consider. I wrote about visualization
on my blog here [4] .In my opinion it is very important to use visu-
alization. This does not only help you communicate but also aids
your thinking. Drawing models, diagrams or other visualizations
can help you conduct your thinking in a more productive way, as
well as making learning generally easier.

Work together

:RUN�WRJHWKHU"�'XK��(YHU\RQH�LQYROYHG�LQ�VRIWZDUH�SURMHFWV�GRHV�
that, do they not? Yes, in a way they all do. But let us take a closer
look at how you do that in your project. Are programmers and
testers really working together? Are they creating test strategies
together? Are testers assisting developers to do excellent unit test-
ing or review code? Are developers allowing the testers to test as
fast as they can by making testing easy? Think of what developers
can do to make testing life easier: create extra logging, build little
nifty tools, automate checking, scripting stuff that is error prone
or create test data. I bet you can think of much more ideas to help
\RXU�WHDP�ZRUN�WRJHWKHU�HIÀFLHQWO\��

Testability

Testability is tremendously important: the better testability is, the
faster your testing will be. It is hard to believe that testability is
often not a topic in software projects. To really improve your testing
this is the “trump card” only a few “play”. Improve the availability
and stability of the software being tested to speed up the testing
process. This may seem pretty obvious, although this point can
often be overlooked. What are the other less obvious aspects of
controllability that can make automation easier, helping the team
observe and analyze what is going on? Have look at this list of
testability heuristics [5] by James Bach to learn more.

Pairing

Pairing is widely misunderstood by managers. Managers often
argue that it is twice as much work to do the same job. Is that re-

DOO\�WKH�FDVH"�,�WKLQN�QRW��3DLULQJ�FDQ�EH�D�YHU\�XVHIXO�ZD\�WR�ZRUN��
Apart from the social aspect that you learn faster, you make less
mistakes and your creativity is stimulated by other people’s ideas.
Another huge advantage of pairing is people learn to understand
and appreciate each other’s work. Some examples could be: test-
ers learning to read and understand code or developers learning
about test techniques. You really build and empower your team
by having them work together closely.

There is much more to talk about and I hope this column makes
you think about testing while adopting agile processes in your
context. I wrote a blog post [6] claiming agile testing is not very
different from traditional testing. I believe adopting agile practices
JLYHV�\RX�WKH�RSSRUWXQLW\�WR�LPSURYH�HIÀFLHQF\�WKURXJK�FRRSHUD-
tion, exploration, learning and evaluating. I leave you with the 7th
principle of context-driven testing [7]: “Only through judgment and
skill, exercised cooperatively throughout the entire project, are we
able to do the right things at the right times to effectively test our
products.”

References

1. DEWT3 see: http://dewt.wordpress.com/2013/04/24/
dewt3-experience-reports/

2. See: KWWS���HQ�ZLNLSHGLD�RUJ�ZLNL�6RIWZDUHBIDFWRU\

3. 7HVWLQJ�DQG�&KHFNLQJ�5HÀQHG�E\�-DPHV�%DFK�	�0LFKDHO�
Bolton at KWWS���ZZZ�VDWLVÀFH�FRP�EORJ�DUFKLYHV����

4. Visualization at http://www.huibschoots.nl/
wordpress/?p=927 OWASP Top 10 Project at https://www.
RZDVS�RUJ�LQGH[�SKS�&DWHJRU\�2:$63B7RSB7HQB3URMHFW.

5. Heuristics of Software Testability by James Bach at http://
ZZZ�VDWLVÀFH�FRP�WRROV�WHVWDEOH�SGI

6. What makes agile testing different? at http://www.huib-
schoots.nl/wordpress/?p=1072

7. Context-Driven Testing at http://context-driven-testing.
com/

Huib Schoots

 Huib Schoots is currently an agile test consultant at code-

centric where he shares his passion for testing and agile

through coaching, training and giving presentations on a

YDULHW\�RI�VXEMHFWV��:LWK�ÀIWHHQ�\HDUV�RI�H[SHULHQFH�LQ�,7�

and software testing, Huib is experienced in different tes-

ting roles. Curious and passionate, he is an agile and

context-driven tester who attempts to read everything ever published on soft-

ware testing. A member of the Dutch Exploratory Workshop on Testing, black-

belt in the Miagi-Do School of software testing and coauthor of a book about

the future of software testing. Huib maintains a blog on PDJQLÀDQW�FRP.

> about the author

ɵ

